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SUMMARY

The method of characteristics has been applied for the determination
of the supersonic-flow properties around bodies of revolution at a small .
angle of attack. The system developed considers the effect of the mri-
ation of entropy due to the curved shock and determines
exactly satisfies the boundery conditions in the limits
fications assumed. Two practical.methods for numerical.
given.

INTRODUCTION

For the determination of aerodynamic properties of

a flow that
of the simpli–
calculations are

bodies of rem-
lution at supersonic speeds, two me~ods have been”used: a method that
uses the small+listurbancestheory and a method that uses the charac-
teristics theory. Both methods are successful in the determination of
the flow properties for bodies at zero angle of attack, but the precision
of the smell-disturbancestheory decreases when a body of revolution at
an angle of attack is considered.

For bodies of revolution k- supersonic flow everywhere, the
theory of characteristics - d.SO be used at an angle of attack.

The method of characteristics for the determination of the flow
field sroundboties of revolution at an angle of attack wa6 first used
by Femari (reference 1) in 1936. Ferrari considers the flow as potential
flow and develops a method for the analysis of the flow field around a
body that in the approximation of potential flow appears to be general
and can be applied to bodies of any shape and with any angle of attack.
In the detetination of the flow properties along the first character-
istic surface from which the analysis sterts, however, Ferrari analyzes
the flow around a cone of revolution; and in this part of the analysis
only small values of angle of attack are considered.

Sauer in 1942 (reference 2) considers the sane problems and shows
that for small values of angle of attack, the analysis of the flow
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field around a body of revoltiion can be made by applying the charac-
teristics method only in one meridian plane; and, therefore, Sauer uses
characteristic lines in place of the characteristic surfaces considered
by Ferrari. Sauer, in the development of his system, is interested
essentially in the.analysis of the flow around circular cones; and when
the method is applied to bodies of revolution of shapes different from
cones, the boundary con~tions are no longer satisfied. The flow obtained
from the solution used, also at smalJ angles of attack, wets a body that
is not a body of revolution. The body canbe obtained from the body of
revolution considered initially by curviuzits sxis of s.mmetm. Sauer
SISO assumes that the flow
flow must be considered as
zero angle of attack also;
are neglected.

The flow field around

is ~ot~ntial f~ow. With this-a8sun&ion, the
potential flow for the case of the body at
therefore, aU the effects of entropy’gradients

circular cones at small andes of attack has
been analyzed in a more exact formby Stone. (See references 3 and 4.)
h hia analysis, Stone co~iders the flow as rotational flow and, there-
fore, takes into account the effect of entropy gradients on the velocity
distribution. Tb3s effect exists only when the cone has an angle of
attack and, at low Mach nuuibers,is smaKl but of the same order as the
effect of other parameters that are considered in the analysie.

Here, the method of characteristics is extended to the analysis of
the flow field around a body of revolution at small angles of attack for
the case of rotational flow. The effect of entropy gradients about bodies
of revolution even at sma12 angles of attack can be important because the
entropy gradients that exist in the stieam for small angles of attack are
due to the variationof curvature of the shock existing at zero engle of
attack also, together tith the fact that the shock surface does not have
@al symmetry with respect to the direction of the undisturbed velocity.

The method presented permits the .determinationof a flow that in
the assumption of small angles of attack exactly satisfies the boundary
conditions and, therefore, wets the body of revolution considered. This
method is given in a form that permits its application to practical
problems and reqties either numerical or numerical and graphical calcu-
lations of the same type as the calculations used for the analyais of the
flow eround bodies at zero angle of attack. The method canbe applied
to cases,in which the entropy variations can be neglected or are zero.
In these cases the terms that contain the entropy variations become zero.

S-YMBOIS

cylindrical coordinates (fig. 1)

polar coordinates (fig. 8)

local velocity (function of x, y, El)

.
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velocity components in cylindrical coordinates (u along
X-axia, v along y-axi13,and w normal to meridian
plane)

velocity components

‘n normal to r
meridian plane)

limiting velocity
zero pressure

pressure

density

ratio of

speed Of

angle of

specific

in polar coordinates (Vr along r,
in meridian plane, and w normal to

corresponding

heats

‘omd(a’=@
attack of body

‘Ch‘e fin‘=$
angle between velocity

angle between the axis
and the ads of the

to adiabatic expansion to

v and x-axis

of the cone tangent
body

to the shock .

angle at the apex of the cone t~ent to the shock

tangents to the characteristic surfaces in the meridian
~lane O = Constant

velocity component normal to

veloci@ component along the
tangent to the shock

the shock swface
,

.

generatrix of the cone

velocity component tangent to the cross section of the .
cone tangent to the shock

angle letween the tangent to the shock andthe”axis of
the body

entropy variation for unit mass

normal to the streamline in the plane 9 = Constarit

normsl to the surface of the shock

— .—— — —.- .. . - . —
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H,L,K,Z coefficients defined by equations (24)

A coefficient defined by equation (41)

Q coefficient defined by equation (45)

Dl,% coefficients definedby equations (~~)

Jq>A2>p&2>T- coefficients definedby equations (6o)

R radius of the hodograph diagram

Subscripts:

o ‘ free-slresm flow quantities

1 flow quantities for the
attack

2 flow quantities related
attack as defined.in

condition of zero angle of

to the effect of angle of
equations (~), (6), and (8)

The prime (t) represents quantities in front of the shock and the
double prime (1’)represents quantities behind the shock.

EQUATION OF MOTIOIJFOR FLOW AROUND ABODY OF

REVOLUTION AT ASMAIL ANGLE OF ATTACK

Consider a
coincident with

cylindrical coordinate system in which the x-axis is
the axis of the body of revolution, the y-axis is normal.

to the x-axis in any meridian plane, and the Tosition of every meridian
plane is defined by the angle 13 measured with respect to the meridian
plane that contains.the direction of the Undisturbed veloci+q (fig. 1).

Ner8s equations of motion for steady flow in cylindrical coordi–
nates are:

lap auu+&v+ auw (la)
–;s=& ay y ae

_Q!=gu+&T+2Lw_5 (lb)
P& ay Y ae Y

I- ap .aiu+&v+2Lw+KK—— (lC)
pya3 ax ay Y 3f3 Y
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The continuity equation in cylindrical coordinates can be expressed
in the form

.

w+mzl+w =()
ax Y& y aO

whereas the law Of conservati~ of energy can be written in the form

( )(~~*_pap ._ uaQ+&v+waw
y–l p ax pa h &ax )s

(2)

(3a)

If the density iS el~ted from eciuatim (2) by means of
equationa (1) and (3) and the quantity a is introduced defined by

the folloting equation can be obtained:

(3C)

(4) 3

In this analysis only small angles of attack will be considered,”
and, therefore, only the first-order effect of the angle of attack till
be determined; whereas the quantities of the same or higher order than
the square of the angle of attack will be neglected. In this approxi–
mation the velocity components of the flow around the body can be
expressed in the following fbrm (references 1 to 4):

u= U1 + CtWcose

v= V1 + ~2”cos e

(5a)’

(m)

- . ... . - -- ..—. — —-. — .—— —- -- — —— ,—. ——..—. - ——. -——.-——,,
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W=awz sine (5C)

where u, v, and w are functims of the three coordinates.x, y, and e;
whereas Uls ~1> ~> V2S =d W2 are functions only of the coordinates x
&d y of any meridian plane. The quentity a is the angle of attack
of the body, the quantities with subscript 1 are the quantities
existing at the position (x,y) for the body considered at zero angle of
attack at the same Mach nuniber,and the quantities with subscript 2 are
functions that take into account the effect of angle of attack.

It will be shown in the followlng considerations that the form
assumed in equatians (~) for the velocity components permits the boundary
contitiofi to be satisfied in the s@lifications assumed. T?rom
equations (5), for small awjles of attack,

P =p1+ap2c0se (6a)

P =p1+~c0t3e (6b)

whereas equation (4) becomes

Equation (7) is similex in form to the corresponding equation for
the case of the body at zero angle of attack and differs only in the

‘erm *“ IU order to analyze the differences between this exprestiion

and th~ expression for the axial.symmetrical case and in order to obtain
another relation that defines the quantity w, the
rotation of the flow and entropy gradient will now

For perfect flow the entro~ variation at any
in the form

o

.
7–1 ~
T P

()

p. 7
e =——

Po p

For small angles of attack, therefore, by the

relation between
be introduced.

point can be expressed

use of equations (6),

P2
– ya — cos e

PI )

——- — -- ———
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or

AS= ASl+a LS2coae

and

where ASl and AS2 are functions only

)Y@

z-
Of x and y.

7

(8a)

(8b)

Between rotation of flow and ~tro~ the following relation exists:

or for small angles of attack

(9a)

(gb)

(9C)

If n iS the normal, in the meridian plane (3= Constant, to the 10CEIJ-
tangent to the streamline, then

as asv &u—=— —— ——
an axv+hv

(lo)

— .- —..—._. .—______ __ _____ .— ---- .— —.
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whereas from equation (9c), when egyatians (5) and (8) are used, it
follows that

(u)

or

.2E2+UIZZ=. v-w2+w~+

& ax --$. % (12)
Y

Equation (7) cm be written h the following form:

Equation (13) together with equatim (I-2)defties the law of motion of
the flow around the body”at small angles of attack. This equation wi~
be used as a basis for the calculation of the flow field by the method
of characteristics to be tieated in a later sectian.

Cormrrmm AT THE SHOCK FRONT

~quations (s) end (6) represent a stream that wets a body of revo-
lution at a smalJ angle of attack. In order to satisfy the boundary
conditions at the surface of the body, the fmctim u2, T2s md w2

must be properly selected. Equatim (5) and (6) must, however, satisfy
the boundary conditm at the shock surface also in order to be a
solution of the probleln. It is necessary, therefore, to show that a
shock smface can efist across which the undisturbed streem ticlined
at a with respect to the axis of the body is transformed into a flow
represented by equations (5) and (6).

In order to show that the shock bomm conditions can be satis-
fied, the followLng procedure till be employed. A shock surface distorted
in a manner to be described is assumed. Then, the &e-treamveloci@
ahead of the shock will be resolved into tlmee componats: TN normal to
the shock, VT tangent to the shock in the plane 13= Cons&t, =d w
perpendicular to the plane e = Cons-t. Similarly, the flow behind
the shock will be resolved into three components. In addition, each
component of the flow behind the shock wilJ be divided into two terms:
one term for zero angle of attack and one term for the difference due
to the angle of attack (for ex~le, u = U1 + a2 cos e). Then,

_—. - -.—
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the conditions of equilibrium at the ~hock will be imposed, and it will
be shown that the terms u2, v2, and.W2 at the shock are independent
of o when the angle of attack is small as initially assumed; hence,
the distorted @hock is consistent with the field of flow behind it. Such
a shock surface can be obtained by deforming the shock surface produced
by the body when the angle of attack a is zero in the following way
(fig. 2):

When a = O, the shock surface is a surface of revolution in exis
with the body; therefore, if OP,OP* is the curve intersection of the
shock with the meridian plane 6 = O, then for a = O, the tangent AQ
at any point Q of the curve OP is the generatrix of a circular cone
having the vertex at a point A of the axis and tangent along the
circle QQf to the shock surface. The shock surface, therefore, can be
considered as a sfiface envelope of circular cones having the axis
coincident with the axis of the body but having variable cone angle and
v~iable position of the apex A along the sxis AB of the body. For
the case of a # O the shock surface is not a surface of revolution but
can stilJ be considered, for small angles of attack, as the envelope of
the same circular cones considered for the case a = O. These cones
have the same apexes md the seinecone angles as the cases for a = O
lut do not have the axis of symmetry AB coincident with the axis of
the body A13 although they are rotated in the plane 19= O with respect
to the body axis. The angle ~ through which each axis of the cones
must rotate in the plane 19= O with respect to the axis of the body,
is not constant but varies for each cone considered. For example, the
cone AQQ8 tangent to the shock surface for a= O,when a#O, must
be rotatedby an angle ~ to the position AQIQl~; the axis ABl
remains in the plane G = O.

The shock surface so generated is ccuisistentwith the flow repre-
sented by equations (5) and (6), and this can be shown in the following
way:

Consider a point P of the shock produced hy the body at an angle
of attack, and consider the cone tangent to the shock at the point P
(fig. 3). Call u the semiangle of the cone with respect to its axis
of symmetry. The axis of this cone is inclined at an angle q with
resppct to the axis of the body and lies in the plane 6=0.

The uniform velocity V. ahead of the shock is decomposed in the

three components: vN~ in the tirection PB no- to the shock, ~T1

in the directim AP along the generatrti of the c~e, and W1 in the
direction normal to the plane APB. These components are, at small angles
of attack,

TNt=Vosinu- Vo (a - ~),cosu Cos e (lka)

—. —————.—.--... ..— —-.— —-———.. -- —~ - - —. .-— —.-—.
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,

~t = –To(a– q)sin e (14C)

Strictly, in equatians (14) W must be written in place of (1;
but. for small @es of attack in equations (14), the difference

where 8 is of the
of the order of a.

can be neglected.

*=6+

order of a, and

Indeed;

e?

f3? differs from e by a quantity

The velocity componmts behind the shock are (fig. 3)

~Nll = usinu— v cos u + q cos O(T sin

~Tn = Ucosu+vsinu+q Cose(vcos

w“ = w+l-j(u— v cot u) sin e

where u, v, and w are the velocity components

IJ+ucoscr) (15a)

G— u sin u) (1~)

(15C)

behind the shock in
cylindri&l-coordinates in axis wi~ the-body at the point P considered.

The velocity compon=ts u, v, and w at the yoint P can be
expressed in the form given by equations (5), in which the components U1
end V1 are the quantities obtained at the point P for the condition
of a= O and are direct functions only of x and y. The point P,
however, is a point of the shock, and its coordinates x and y change
when the coordinate e changes; tbref”re> the v’elocitYcomPon~ts ul
and V1 at P also change with 61. In order to separate the part of
the components u, v, and w dependent on e from the part independent
of e, the velocity components U1 and ~ at P will now be expressed

as a function of the flow properties at a point P1 near l?,having a
constant value of x and y for every mlue of e.

NOW, it has been assumed that the angle of the cone u tangent to
the shock at the point P is equal to the angle of the cone tangent to
the shock for the conditim of zero angle of attack at the point P1
(fig. 4). The point P1 is obtained on the shock by rotating the
cone AIQ tangent to the shock for the condition a= O through an
angle q around the exis Al? normal to the plane G = O at the apex A
of the cone. Because for the condition of zero angle of attack the
velocity components U1 and ~ are independent of the coordinate 13,

the velocity components U1 and ~ at F(xp>yp) (fi$. 4) are e~ud-

to the velocity components at p2(xpsYp), in the plane Al?lC. Therefore,
if AN is the Ustance P2P1,

(16a)

.

—— —- . .
,.

.,--—
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where (fig. 4)

%fl
m =—cose

cos, a

Substituting equations (5), (16), and (17) in equations (15) resdts
in

.\

~N!l
= (UI sin a .–VI cos a)p

1

+ CL COS E)(u2 sin CT–VP cos a)p
1

+ ~ cos 6(u1 cos a + VI sin a)pl

Xplll

t

av~
+—

Cos a Cose+stiai3N )——cosapl

XPJ
+—

cos a

a + VI sin u)p
1

e(~ cos a + v2

e(ul sin a –vl

?
— cos a

Cos e a:

sin a)p
.1

cos a)p
1

‘“ =‘W?plsine+q(ul- U cot O)pl sine

(16b)

(17)

(18a)

(M-b)

(18c)

/

—--- - ——.,. - - .-. —— ---- ———-—--.-,-—. --.-,— ----- ..--—. ---- —.. —.——.. .-. . ..—
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For the condition of zero -e of attick at P1

%1” =Ulsinu — VI Cos u (19a)

VT “=ulcosu+vlsinu
1

(19b)

and for the condition of &e equilibrium at the shock at zero angle of
attack

At the point P for the case of a small angle of attack,

&T<f)p =
= F22-VT”2)P

(20a)

(20b)

(21a)

(21b)

(21C)

—.. — —. —z z —..
-—.

..,.
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If equations (19) we used, equations (18a) and (18b) can be
written in the form

(T”)P=f%’}P1 + a c“” “F%’’)P1 + q c“” “@Tl”)P,

(+)’ =@ll’’)Pl+ a co” ‘P’2”k, - ‘ OOs ‘t~&’l

=P17

r)

Tln
+—

co” a
co” e ~N PI

#

. . . . ..—.-. —__ ..— — -—.——— --- —.— .-.— —.—-. .—. . . . —-,,,
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()TN2’ ‘A-is) @-:)”~”+(’-:)f%)plVOpl tsnu
\

7 7 XP1 1

()

%?ln—— sin u ——”— —
a , 7P-J

(23b)
a cos a To

.,

In equations (23)

._(,_:)+(-,+; cOt~,,: (23c)

the coordinate 13 does not appear; therefore,
for the s~ock consi&ed, the fuactions ~, V2, and W2 &e independent
of (3,and equations (5) represent a flow condition in agreement with the
conditions at the shock.

The ratio q/a which appears in equations (23) is independent
of a; therefore, for a given point PI, q/a remains constant in all ‘
the range of angle of attack in which the simplifications assumed are valid.

(Indeed, U2, V23 and W2 are also independent of the angle of attack

(equations (6)). The values of ~, V2, W2, and ~/a must therefore be

determined only for one value of the angle of attack.

MEl?HOD(ll?C~CSFORI%OW AROllNDA BODYOF

REVOLUTION AT A SMAIL ANGLE OF ATTACK

In this section the method of characteristics is applied to
equation (13) to establish equations which will permit the flow field
lehind the shock to be calculated by a pointAy-point process. If the
flow is anywhere supers-c, equations (12) and (13) permit the determi–
nation of the flow around a body of revolution at a smalJ angle of
attack by using the method of characteristics. Equation (13) can be
written in the following form

..— ,..—- —.—- ..— — — —- —--- ---
,.
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where

~2
H=l– —.

~2

L
?=l– —
a2

K Uv=-—
a2

Uvl asax
z=———+

VyR& y&+Y

15

.(24)

If q is the angle betwean the velocity V and the X-S
and ~ is the Mach angle,

Sinp=a v

or for small angles of attack

tmq)=x
u

and

. . .. .. . . . .. .. .. . . ___ ____ . - —----- . . . ...— ———.—— —......—- -c
.,
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The tangent to the line intereectlon of a characteriflticsurface
with the meridian plane 13= Constant is

(25)

where La is the tangent to a line corresponding to the characteristic
surface of the first family and Lb is the tangent to a line corres-
ponding to the characteristic surface of the second femily. The
terms Xa and Ah sxe solutions of the equations (referance-5)

, H h2

Because u, v, v, and a can
of the type of equations (5),
form

–2Kx+L=0 (26)

be considered to be@ven by an equation
q and ~ can also be written in the

(p.qg-+~cose

i3=Pl+@2cose

The characteristic surfaces are not, therefore, surfaces of revolution
but can be obtained, as wae true for the case of the shock, as an enve-
lope of circular cones with their apexes at the axis of the body and
their axis of symmetiy in the plane 13= O and inclined with the axis of
the body.

.

The determination of the u and v components of the velocity in
any point of the flow can be obtained by equation (13) by perfoming a
transformation in order to obtain a law of variation along the character-
istic lines (reference 5). Indeed, for every point of any -mridian

plane (for example, of the meridian plane 8 = O, or EJ= ~) two charac-
teristic lines can be obtained as the intersectio~of two characteristic
surfaces with the meridian plane. Along these lines the variation of
the u and v velocity components is determined by the equations of
characteristics that canbe derived from equation (13). .Assumethat in
two points P1 and P2 (fig. 5) of the meridian plane e = Constant

—— —. ——. —–..——. . .— . ..—- - —.
,’.-’..
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( )= ~ the velocity components are known.for example, E?= O, or e *

~om equations (25) the tangents to the characteristic surfaces in this

meridian plane can be drawn and the velocity components u and v at

the point P , ~tersection of we *O tqents
X2

, can be obtained in the
first appro mation.

The equations of characteristics canbe obtainedby analyzing
equation (13) along the characteristic lines given by equation (25) in
the following way: If du and dv are the variations alon~ the
characteristic lines,

or (see equation (10))

ax
4

then

av=—ax+ (27a)

(27b)

If equations (27a) and (27b) are substituted iq equation (13), and using
equation (26), along the characteristic line of the first family defined
by

!g=~a = ml(f) +q)

.

there results

(28a)

(28b)

.— —-_._..._-—__ ...__ .——. _ .—— .—— ——.. . — — — .—.
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and along the characteristic me of the second family defined by

there results

Equations (28b) and (28d) contain the term
+

but at
attack

y 0’

(28c)

o (28d)

small angles of

~==cose=lzcote
Y. Y

and, therefore, ~ IS known at the points PI Ad P2. The value

of the entropy is also known at the points PI and I’2 end, therefore,
the value of & can be ~te~ed (reference 5)

as +2 -%1
—=
al

1

(29)

( )[

sin p
. Xp

(
+ Xp — Xp

)[

sin p

3 –x~l COS(P + ~) P1 3 2 Cos(ql–
1

P) p2

~om equations (28) and (29) the values of u and v can be determined
in the first approxhation for tie point P3. ~ order to detemine the

vslue of w at P3~ the following procedure can be used:

If s is the projection of the streamline in the meridian plane
considered (fig. 5) and 23 is a point near l?l and P2,

dwp awp awp ‘—= —
as ay ‘inq+wcosq

_aw2v+aw2u——
ay v axv .

, ,

. . — .—.-.—- .,
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or from equation (12)

w

&z__ vw~+w2+uuQ 13in2$vw

as YT Ym

Now (fig. 5)

and

()dw2—=
tiE

(30)

‘2E’W%+(%)% @3-xd [-],1 (31a)

W12
1? = ‘%2 +(%%)p2p3 -’% -2)[ IP

(31~)

7%
r -1 _ (32)

Therefore,

,3 =W2E+(2)E(+3-xi)[co~&fJpl
wr2

(33)

The values of u, v, w, and&3 are known at the points P1
and P2; therefore, the values of u2, v2, W2, and% at the same
poc&alcan be calculated from equations (5) and (8). Indeed, u1, ~,

at those points are known from the determination of the flow

for a = O; therefore, from eq~tions (30) to (33) the value of W2

at P3 can be determined.

After the velocity components u, ’v, and w at P3 have been
detemlned in the first approximation, a second approximation can be
determined by assuming the average values between the corresponding
velues at the points P2 and P3 or P1 ~a P3 for sJ2 the coeffi–

Cients. After the velocity components at a point P3 ha.e been

obtained, the velocity components at any other point having the same x

—.— —.—. ,. . .—— ..__ ..- -——-–.— —.——- ,-—---- . __ .—_ -—. _____ _______ ______
,,
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.

and y coordinates as P3 hut a different ccxmllnate f3 can be
calculated from equations (5).

For practical-calcul-atim, equations (28) can be transformed in
the follo~ng form:

ka = tan(p + q)) (34a)

(34C)

where
.

and

(34f3)

(35)

(36)

(37)

where

V2 .

At the surface of the bodv the calculations we similar to the case
-–”

of zero angle of attack ‘becausethe entropy at the surface of the body
is known in every meridian plane and the value of e is given.
Equation (34e) gives the variation of W2 along the body; therefore,

—. —.._ ..- —— ...—
,<
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the value of W2 can be obtained directly from another point on the
body In the same meridian plane.

At the surface of the shock the system of calculations is similar
to the system for zero angle of attack. In figure 6 the point I?3 is
at the intersection of the tangents to the first characteristic surface
at PI and to the shock at P2 in the meridian plane e = Constant.
The equations of the shock and equation (34b) must be verified at P3,
which is assumed as a point of the shock h the first approximation.

In the plane O =.0, w is zero and the values of V, AS, and q
behind the shock are functions only of the value of S2;and for ~
value of $2,the values of V, &, and p can be obtained from the
equations of the shock

and

1

[

2
.-

1

-1 tml(fl– a)
tm(q – a) 2 M&@ -a) -1

fls=~
Y -1 10’0‘(%Y+’psh2@-”)

(39a)

(39b)

(39C)

If the plane f3= ~ is considered, the sign of a in equations (39)

must be reversed.

From equations (39) the values of V end AS can be detemnined

_—. - —..._. .. . . . .. ____ —._ __ --- ——.. —
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as a function of

evaluated. Now,

velocity at P3

q;tim g and d-~dq
as a function of q can be

if Qpl is the direction of the velocie at Pl, the

will have

Therefore, the velocity at

the shock of ~ –U and
3

b3

the tiection

P3 must correspmd to a detiation across

can be expressed as

‘%, +
-1.

where V
%$1

is the velocity behind

direction ~, . In a similar way,
-L

+3 =

Therefore, equation (Sib) at

the shock corresponding to the

the yoint 21 becomes

-L

-[( . )Sinq)+wpcose Sin P-tap

Y yv 1-(P + T) pl
ax

= o (40)

—- -... ——- --- - ..- — — - —
.,-.
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In equation (40), @ is the only unlmown and, therefore, can be
detemined. ltromthe value of q the value of Slp and the value

3
of Vp

3
can be determined; and a second approximation for the position

of P7 and its value of the ielocity can he calculated if the corr+.

spending average values between P
2

and P1 are assumed for q, ~, and
aXl the coefficients of equation ( O).

The value of w at P can be oltained from equation(23c) in
which ~ is given by figure 6 as

whbre q=fl –U for i3=0 and ~=u–fl for e=;. The value

of u corresponding to the point P4 on the shock for a = O iS

given by the relation

Yp4 Yp
3——

sin c ‘sin L1

()and Yp=fap is the curve
4 4

PRACTICAL APPIJCATION

Graphical

The analytical part of the

that represents the shock for a = O.

OF THE ~ISTIC S@I’EM

Numerical Method

characteristic system used for
determiu@.g the flow field about a body of revolution at an angle of
attack is similar to the system used for a body of revolution at zero
angle of attack (reference 5), but the practical numerical application
is slightly more involved. In equation (34e) the values of V2

and ~ must be known in order to determine the value of W2 and must

be determined from equations (37), (36), SRd (8), where the v~ues of V1

and 2S1’ are considered lmown in the entire flow field and given by the

determination from the csae of zero -e of attack. In the practical
case, however, the values of Vl~ qlj and Ml have been obtained witi

.

.—. .-—.—— —-—-——.——-. -- —-— —- - -
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the characteristic system only in a finite number of points at the inter-
sections of the characteristicnet; and the characteristicnet for the
case of zero angle of attack is different from the net used for the case
of a body with a small angle of attack. In order, therefore, to obtain
the values of V1 and Ml at the intersections of the characteristic

lines for the case with a given angle of attack, a complicated inter-
polation of the values V1 and ASl woul.dbe necessary if the two

characteristicnets for zero angle of attack and for a given angle of
attack were constructed independently.

In order to reduce the numerical work to a minimum, the two following
methotican be used, the first of which is practical when a grap~cal
numerical calculation is perfomned, whereas the second can be more
convenient when automatic computing machines are used.

In both cases the calculati- start with the detemnination of the
flow at an angle of attack around a cone when the body considered is a
pointed-ose body of revolution or with the determination of the shook
at the lip of the b&ly if the body is an open+ose body of revolution.
(The tangent to the shock at the lip can be detemnined with the two-
dimensional theory.) The flow around a cone at an angle of attack has
been detemined and tibulated in reference 3; whereas the flow for zero
~angle of attack has been tabulated in reference 6. A different method
for deter- the flow around a cticular cone at an an@e of attack is
given in the appendix. It can be assumed, therefore, that the flow
elong the first characteristic line of the first femily at the end of
the conical region in the plane e = Constant (for example, e = ~)
is lalown(fig. 7) ●

For the practical.numerical cal.culati- a value of the angle of
attack must be selected. ~ order to obtain higher precisian, it Is
convenient to select a relatively high value of the angle of attack
because in this w~ the differences between V end V1 and AS and ASl

are large and, therefore, can be detemined with sufficient precision.

UsusUy, when the dete-atim of the flow field for the case of
zero angle of attack is made with a graphical numerical process, in
order to avoid numerical errors of computations, the value of the
intensi~ and tiection of the velocity axe plotted as a function of the
position elong the characteristic lines for both families of character-
istic lines. The veloci~ distribution and the entropy-variation distri-
bution along the characteristic ltnes and along the surface of the body
for the case of zero angle of attack can therefore be considered lmown.
H the d.istributi~ is not @T~~ the V~UeS Of V1 ~d % -t be

detemined as a function of x &long each characteristic line of a given
family (for example, of the second family) along the body.

Then the construction of the characteristic net for the selected
angle of attack must start by drawing the first characteristic
line POP2P5 over the design of the characteristicnet for zero angle

of attack (fig. 7).

.— .-— — .-— —. ——- ———.——
.. ,
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From equation (34c), (.3hd),and (3ke) the flow at P1 can be
determined. JJkom P1 and P2 the point P3 can be obtained in the

first approximation aa the titersection of the tangents at P2 and PI

to the characteristic lines. By using equaticms (34b), (34d), =d (29),
V, cp,and AS cabe obtained in P3 as for the caee of zero angle of

dAS ~U theg, & and ~attack (reference 5). ltromthe variations

line P1P3 the values of V, p, and AS at the yoint P4 canbe

obtained, where P4 is obtained from the intersection of tie characte~
istic line P1P3 with a characteristic line of the second family in.
the net for zero angle of attack. At the point P4, Vl, ASl, ~d P1

are known; and, therefore, ~s V2s ~, ~d W2 can be obtained. J!%om

the values obtained from the first approximation a second approximation
can be obtained. l!rom P4 and P5 the point 26 can be determined
in a similar way, and the flow at P7 c=be calculated. Proceeding in

a similar way, all the flow field can be analyzed.

Numerical Method

The equation of motion (13) can be transformed by msans of
equations (6) and (8) in a system of equations that permits a numericsl
determination of the quantities V2, ~, and ~. This system is-
numerically more involved; however, the characteristic net detemined.
for zero angle of attack is used. For a small angle of attack,

11—=—

[

1 + +(U1U2 + ~lvz)a Cos e
a2 a12 al 1

where

Therefore
.

“1 _ -ql+hcose)
a2 %2

(41)

.—. —. —.. —. ...— .— —— —-— ..— .—.. .— .—.. -—-–.—-——-.--. —
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Substituting equations (~) in equations (7) results in
expression if highe~rder terms are neglected:

the following

Because the leftXhand side of equation (~) must be zero for the
conditions at zero angle of attack,

where

,1

–.— . —. ., ____ .,. ——..”-,“..
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or, from equations (10) and (36),

a~l 2% + UIA ml 2V2 + VIA
Q .–~l— _~l —

ax a12 ay a12 -

27

The value of all the coefficients at the points I?l and P2 in
-~ ~~ ? Canlle

equation (4.3)can be considered known because
b

considered known from the calculations for the c-aaeof zer; angle of
attack. Therefore, equation (43) canbe considered * equation in which
the characteristic lines are equal to the characteristic lines for zero
~e~of a~tackbeca~e the coefficients of the partial derivatives
w2%~2md~2
ax’ ay’ ad

— me the same in both cases. Thus,
ay

(),div
E = Lla =tan(qll + f)l) “ (46a)

(46b)

.

Equation (43) cmbe transfomedby introducing the entropy
*

gradient —
an’

and the equation of motion along each characteristic line

can be obtained. l?romequations (8a) and (10) bymmns of equations (5)
and (37), the following relatian can be obtained:

%—acose
an

(2451 asa )V1 + V2CL Cos (J
=—— —

ax+ax~cQs~ Tl + Vpz Cos e“

.

(*1 as2 ) q + Uaa/Cos e
——

+ ay+b Yc08e Vl+V2acos@

. .. --.-— ....-. .— -—. = —. . .—. —________ ._ .._ ._. _ __ ___ _____ ...__ _ ___
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or, for small angles of attack,

1+5(U2V1-U1V2) w
1

~om equations (36) and (38)

and

Because the term in parentheses on the right-hand side of this
equation represents the variation of entropy along the streamline,
which is zero, equation (47) becomes

(47)

(48a)

(m)

(49)

.— _.— .. .. .. -. .’.,
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Then, from equations (10), (41), and (49 )

The equations of motion along the characteristic lines defined by
equations (46) can be obtained by meanE of transformations simihxr to
those of equations (27) and are

(51) “

‘la=* = ‘U(W + Pl) (52)

du2+X1adv2+D2 &=0 (53)

(%)

where

-- ——--— .———— - _——_____ _ ____ ____
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In equations (51) and (53) the coefficients D1 and D2 contain the

derivatives ~ ~d ~ that must be obtained from the anslysis of the
&

case tith zero angle of attack. Now, for every point 1? the variation
of V1 along the chmacteristic line of the first family for the case

of zero angle of attack is

where= along the characteristic line of the second family

(56a)

(56b)

At every point P givan by the intersection of two characteristic

()mllfies ha ad b
h the characteristicnet, the values —

k Al&

()

dv~
and are known, having been obtained from the evaluation of

=~

the follo~ equations (reference 5):.

(57a)

—.—— . . . -.— -. —.- ----- ... —-—-—— —---—-,. .-,, . ,.-,,,
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.

Therefore, the values

.
and

31

(5n)

(57C)

(57d)

(S3a)

can be calculated directly for every point of intersecticm of the cWac-
teristic line (equations(57a) md (57C)J

After substitute the expressions of equatians (48) and (58) in
equations (51) and (53) after some simplifications and trigonometric
transformations, the folJmwing equations can be obtained:

(59a)

. .. -—.-.. ---- ._ ——— —— __ ... . .. -——. -. -—-...——–————--—-–. .—.. ——...
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+aq)2tEmpl– sin q)l+ COE q)l

.

where

+2=

(59b)

(59C)

(59d)

(60a)

(60b)

(60c)

(60d)
..

—. . . . . .- —- ———. —.— ———.. ....__— .. . . . .
. . . .-<-
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The coefficients Al and ~
as~

end the value of — have been
an.

J-

detemined for the flow at zero angle of attack and

asp
—=
%

=

The practical use of
corresponding equations (57) for the-case of

(61)

equations (59) is identical to the use of the
zero angle of attack.

(See reference 4.)

coIwxmnNG REMARKS

The method of characteristics has been applied to lodies of
revolution at a emsll angle of attack. Only the first-order effects of
the angle of attack have been considered. The system developed takes
into account the effects of the entropy vsriatians cm the flow phenomena
and determines a flow that exactly satisfies the boundary conditions
within the limits of the simplifications assumed.

The application of the method to practicel problems has been
discussed and two systems are given. The first method is numerical and
analytical and reqties less numerical computation but requires the

—-. - .-——————..- ..— ——- -— ---—— .-—- .—_.._ -— - ~—... —



constriction of another characteristicnet, whereas the second method is
only numerical.ad uses the c-cteristic net and some of the numerical
computations made for the calculations for zero angle of attack.

Langley Aeronautical Laboratory
T?atimml Advisory Committee for Aeronautics

UeYti Force Mse, Vs., Wveniber 22, 1948
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DETERMINATION

AI?EENDG

:---- ---’

., .,

OF ~OW PRO&ti AROUND A CIRCULAR CQNJ!

A!rAsM&L ANGLE

Assume a polar oaordin.atesystem

in radial diqection, Vn the velooity
. the meridian plane f3= Oonstant, and

meridian plane (fig. 8); that is,

oFATl?fw K ‘“’

r,~, f?, 0~ vr the velooitq
& norm@ diieotich to r in

w tie compomnt norr@l to the

w=
r iklsin $

at

If the phenamanon is conical,

~,= o ~

3.()
ar.

aw
==0

ap
&

=0 -

ap o—=
ar

and

r
(62a)

(62II)

. .. —————. --- ----- ——— -,— –—--—— --- .-. —— —.. .z —— .——. — .-. z ..-.—
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‘n aww
—— +
r aq r sin ~

The continui@ equation

an
2pvr. sin *+ v= sinv~+ p sinlfw+

W

and the energ equation is

Vrw + Vnw cot *

r
(62C)

v..pcoab-w QQ+&=oae ag (63)

( )( )L 232.2* ._vrzJ+TnYb+w:
7– lpae p2af3 ae

(lb p ap
)(

a-v &n aw—— —.— —=— =+v —
Y:lpav $* ‘r av naq+w% )

(64a)

(64b)

Combining equations (62) to (64) results in

(65)

For smaXL engles of attack the velocity components can he expressed
in the form (references1 and 3)b

‘n = Tnl +av
%2

Cos e

w=aw2sinf3
1

.

(66) 0

——- ————— . . . . — — --. .— -—.._ . .
.. .
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,

.

when the second and higher order terms of the angle of attack have been
neglected. Equation (65) at small angles of attack becomes

At small angles of attack,

P =p~+mppcose

p=q+ap2cose

The shock is a circular conical shock having its axis inclined at an
eagle ~ with the axis of the cone. The quantities with stibscript1
are the quantities corresponding to the case of zero angle of attack.
(Indeed, the cone is a particular body of revolution; and, therefore,
the consideration made for the case of bodies of revolution are still
valid.)

From equations (62a), (62b), and (@b), there results at small
angles of attack

In the meridian plane O = Constant, therefore, the transformation
behind the shock is isentropic for smell angles of attack. If a- Cos g

is the variation of entropy in a directian normal to the meridian
plane 9 = Constant, ~

& .a@cose
rsti~ae

Because the shock at small angles of attack has circular cross section,

_.. —___ ._._ ._— ___ _+ __ —. .—-— ——. ..— ____ __ . _____
,. ,“
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and from equations (62c) and (64a)

(68)

If the variation of entropy iS ~ and We term N2 can be ne~ectedj
equation (68) becomes

W2 sin $ = –Vr
2

Equation (67) can be written in the following form:

(69)

(70)

By use of equation (67) and by considering the conditions for zero angle
of attack, equation (70) becomes:

(vr2+2J(J$).
—v

[

cot
%2

1

(
Vrl + Tn cot Q

--vr2 1 + -
1

‘~vnl

)

2

4
2’

.–.*$

al Vn
1–J

a12

(71)

—— — .—— -- .— —.— _——. ——- -— —
: --
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Equations (68), (70), and (71) permit the determination of the flow
around the cone at an angle of attack by means of a ste&by~tep calc~
lation when the calcu$aticm for a = O has been perfomned. c~ider
the hodograph plane UV, and consider the variation of velocity
components vr and vn in ameridian plane e = Constant (fig. 9).

AEsume that for a given value of ~a and ea the velocity

components Vr, ~n, .~d w are known. Point Pa of the hodograph

diagram represents the velocity vector OPa corresponding to the velocity

at every point of the space of coordinate Va in the plane ea = Constant;
whereas CX& represents the values of

()‘n pa and ~Pa represents the

()
Now, the radius of curvature Ra of the hodographvalues of Vr ~ae

diagram is along the line &Pa and has a value given by (reference 1)

‘A@$)p
a

.

.

and, therefore, can bb
of Vrl and v= are

1
therefore, ‘r2 and

determined from equation (TO). At Pm the values
known

‘%
Equation (71) c–~ be used ‘b
The vectors OQa and %Pa

at Pa; the vector OPa in

of P*; and,therefore,

R2
a

from the calculation for a = O;

can be determined from equations (66).

place of equation (70) in the followtng W:
represent the values of v

?2’
and Vr2

the hodograph diagram gives the values

can be obtained from equation (71).

Now at any point 2a the radius Ra, given from equatian (70), or

the radius R2 , given from equation (71), is lnmwn; therefore, from the
a

quantities at Ya the quantities at ~ of coordinate ~ = Va + AV

cam be obtained by consimzcting a circle of center Ca

‘L

where CaPa =Ra

or R2
)
a through the point Pa until the point ~ alo the line C,

...— ..—.. —., .—. . —-_ --—-- ———— ——— -—- -—.—————.
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which is a straight line from Ca, is inclined 3Y Wa + A* with the

u-axis. Therefore,

Inasmuch as the values of Vr and Vn at ~ have.been obkined,

the values of Vr2 and v
%2

can be determined by differences from the

velues for a = O with the use of equations (66). (If equation (71) is
used, the values of ‘r2 and -v ere obtained directly.

)
with

&2 %2
equation (68) the value of —

av
can be calculated at Pa, and the value

of W2 at ~ can be obtained. Indeed, ~ is constant and has been

determined from the conditions at the shock. In a similar way, all the
hodograph diagram can be constructed. If necessary, for every point pb

a second approximation can be determined.

The calculation of all the flow field must start at the shock. For
the cal.culattcmsit is convenient to choose a coordinate system having
the axis of the conical shock as the tis of POlm coor~tes. In this
case, the velocity components ‘r~ ‘n>

be erpressed.in the form of equation (66).
and (19),

vn8=[.n.+acoso;
%+

= Vnl +av
928

Cos e
s

‘r==[vrl+aCOS,(r2+
= -v +Ccv ‘0s 8

rl r2
s s

w- behind the shock can still

Indeed, from equations (15)

(72a)

VZP” )]nl
b

(7=)

——— — — — ——, —.- - — ...—= ---
,.-,
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.

( 1=asinew2— — 1 ~n
‘8

sinv a )lb

. ~2 sin e
8 (72c)

where Vn , vr~~ and W~ are the components refereed to the axis of the
s

conical shock, whereas the components
%’ %’ ‘a ~ ‘e ‘efemed

to the axis of the body. Indeed, ~/a is constant.

The calculations start at the shock. After determining the flow
field tor zero angle of attack, the angle of the conical shock ~s is

tiowfIand the velocity components Vnl and Vrl tith respect to the -s

of the shock for every value of ~ are also known. In order to determine
the flow for the case of a small angle of attack, the direction of the
undisturbed velocity must be rotated at a small angle cc- q with respect
to the axis of the shock (fig. 10). The value assumed for a–~ fixes
the value of a for which the calculations are performed. (This value
of a is not yet known but is obtained as a result of the calculation.)

For the value of a – q chosen, the components ‘ra and Ws behind

the shock canbe determined from equation (l$b) Vr
( s ‘vT~) ‘d

equation (14c) ~w~ = Wa); whereas v= can be determined from equa—
s

(
tion (21a) Vns =–TN”

)
and VN* is givenby equation (lk). The

value of entropy a% cos e can also be detemnined from the equation
of the shock, for example, from the difference between AS ~d N1.

When vr, vn,w2,
s s s

field can be obtained
hodograph diagrsm can

The sxis u has

and @S2 are known behind the shock, all the flow

bymmns of equations (68) and (70) or (n). The
be constructed, for example, in the plane G = ~.

been chosen in the direction of the undisturbed
velocity for zero angle of attack that corresponds to the axis of the.
shock for a = O. For a the undisturbed velocity has leen rotated
at a— ~ with respect to the waxis (fig. 10); therefore, the axis of
the shock has not been changed. The velocity OP. behind the shock of
figure 9 nmst be decomposed-(l) in

corresponding to vrs if equation

equation (71) is used end (2) in a

or v
*a”

a compone~t P~Qa inclined at

(70) is used or to ‘r2 if
s

component OaC& corresponding

*a

tO Vns

-—— -—.. . ——— . -——— ...-__ . ... -_ , .- _ —____ _ _ _____ ._ _
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.

In this way, the values of ‘rl and Vnl that mnst be used in

equations (68), (70), and (71) are the values obtained from the calcu-
lations for zero angle of attack at the same value of v
(that is, * = *s for 2J. Because the calculations start at the
shock, the construction of the hodograph &gram must be perfomed In
the direction of decreasing values of *. At the surface of the body
for g = $, the component v= must be zero; therefore, when the radius.

of the hodograph diagram passes at the origin of coordinates u and v,
the corresponding value of V iS equal to V. + q where W. is the
angle of the cone (fig. 10). Because *O is known, the value of q
and, therefore, of a can be determined.

The compon=ts Vr ~d Vn b the plane e = O or e = ~ do not

chsnge when, for the axis of reference, the ads of the body is assumed;
but the corresponding value of ~ iS ti~re=ed at q (fig. 10). The
vslue of w2 changes; the value of w2 can be determined from the

b
Tdue of W2 ly means of equation (72c).

For Dracticd Cd.ctiatiom it is convdent to we nondimension
coefficients o%tained by dividing all the velocity components
limiting velocity Vz. The e~ession @ z Cm be ob~ed
equation (39d).

For small values of a, the values of ‘r2>
%2’ ‘2’ ‘d

by the
from

q~a are

independent of a; and, therefore, the flow for every other value of a

can be obtained from this determination. The calculations can be
graphical or analytical.

,-—. ~. ..— .—
... .,:,, .,. ,
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